Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

Statistical Analysis and document mining - 4MMSADM

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
  • Number of hours

    • Lectures : 15.5
    • Tutorials : 2.0
    • Laboratory works : 15.5
    ECTS : 3.0

Goals

The aim of this course is to present the statistical approaches for analysing multivariate data. The information age has resulted in masses of multivariate data in many different field: finance, marketing, economy, biology, environmental sciences,...The theoretical and practical aspects of multivariate data analysis are given equal importance. This balance is achieved through practicals involving actual data analysis using the R software.

Contact Jean-Baptiste DURAND

Content

1. Multiple linear regression. Least squares, Gaussian linear model, test of linear hypotheses, one-way analysis of variance.
2. Principal Components Analysis (PCA).
3. Classification, linear discriminant analysis, perceptron, Naive Bayes
4. Text mining, numeric representation of texts, connexion with graph clustering.



Prerequisites

Applied Probability 2 (1st year), Statistical Principles and Methods (Semester 2)

Tests

Practical exam with R (3 h) and reports on supervised practicals.
Authorized document and material: handwritten notes only. An electronic version of the booklet will be provided by the teacher.



N1=1/2E1+1/2P
N2=E2

Additional Information

Curriculum->Information Systems Engineering->Semester 8
Curriculum->Math. Modelling, Image & Simulation->Semester 8

Bibliography

CM BISHOP (2006) Pattern recognition and machine Learning. Springer
http://research.microsoft.com/en-us/um/people/cmbishop/prml/

C. CHATFIELD and AJ COLLINS (1980) Introduction to multivariate analysis. Science paperbacks

T HASTIE, R TIBSHIRANI, and J FRIEDMAN (2009). The Elements of Statistical Learning, 2d ed, Springer. http://www-stat.stanford.edu/~tibs/ElemStatLearn/

G. SAPORTA : Probabilités, statistique et analyse des données, Technip, 2006.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Date of update December 6, 2017

Grenoble INP Institut d'ingénierie Univ. Grenoble Alpes