Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

Advanced learning models - WMMS536I

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 18.0
    ECTS : 3.0

Goals

Introduction to statistical learning theory and kernel-based methods.
Applications in bioinformatics, computer vision, text mining, audio processing, etc.

Contact Julien MAIRAL, Jakob VERBEEK

Content

I. Introduction

I.1. Statistical learning: issues and goals
I.2. Risk convexification and capacity control
I.3. Convex optimization for statistical learning
I.4 Real applications

II. Kernel-based methods

II.1. Similarity measures and reproducing kernels
II.2. Reproducing kernel Hilbert spaces
II.4. Main families of reproducing kernels
II.3. Regularization as spectral function

III. Supervised statistical learning

III.1. Kernel Ridge Regression
III.2. Kernel Logistic Regression
III.3. Support Vector Machine
III.4. Capacity control and risk bounds

IV. Unsupervised statistical learning

II.1. Kernel Principal Component Analysis
II.2. Kernel Canonical Correlation Analysis
II.3. Spectral clustering
II.4. Large margin clustering
III.4. Capacity control and risk bounds



Prerequisites

Probability, statistics, linear algebra.

Tests

The exam is given in english only 



Additional Information

This course is given in english only EN

Curriculum->MSc MSIAM->MSIAM - Semester 3

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
Université Grenoble Alpes