Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

Kernel methods for machine learning - WMM9MO14

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Volumes horaires

    • CM : 18.0
    • TD : -
    • TP : -
    • Projet : -
    • Stage : -
    • DS : -
    Crédits ECTS : 3.0
  • Responsables : Julien MAIRAL

Objectifs

Many problems in real-world applications of machine learning can be formalized as classical statistical problems, e.g., pattern recognition, regression or dimension reduction, with the caveat that the data are often not vectors of numbers. For example, protein sequences and structures in computational biology, text and XML documents in web mining, segmented pictures in image processing, or time series in speech recognition and finance, have particular structures which contain relevant information for the statistical problem but can hardly be encoded into finite-dimensional vector representations.

Kernel methods are a class of algorithms well suited for such problems. Indeed they extend the applicability of many statistical methods initially designed for vectors to virtually any type of data, without the need for explicit vectorization of the data. The price to pay for this extension to non-vectors is the need to define a so-called positive definite kernel function between the objects, formally equivalent to an implicit vectorization of the data. The "art" of kernel design for various objects have witnessed important advances in recent years, resulting in many state-of-the-art algorithms and successful applications in many domains.

The goal of this course is to present the mathematical foundations of kernel methods, as well as the main approaches that have emerged so far in kernel design. We will start with a presentation of the theory of positive definite kernels and reproducing kernel Hilbert spaces, which will allow us to introduce several kernel methods including kernel principal component analysis and support vector machines. Then we will come back to the problem of defining the kernel. We will present the main results about Mercer kernels and semigroup kernels, as well as a few examples of kernel for strings and graphs, taken from applications in computational biology, text processing and image analysis. Finally we will touch upon topics of active research, such as large-scale kernel methods and deep kernel machines.

Contenu

Prérequis

Probability, statistics, linear algebra. Introduction to machine learning. We expect students to be familiar with linear models in statistical learning.

Contrôles des connaissances

data challenge et examen final

un data challenge et un examen

L'examen existe uniquement en anglais FR

Calendrier

Le cours est programmé dans ces filières :

  • Cursus ingénieur - Master 2 Math. et Applications - Semestre 9 (ce cours est donné uniquement en anglais EN)
  • Cursus ingénieur - Master 2 Informatique - Semestre 9 (ce cours est donné uniquement en anglais EN)
cf. l'emploi du temps 2020/2021

Informations complémentaires

Code de l'enseignement : WMM9MO14
Langue(s) d'enseignement : FR

Vous pouvez retrouver ce cours dans la liste de tous les cours.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

mise à jour le 15 janvier 2017

Université Grenoble Alpes