Volumes horaires
- CM 12.0
- Projet -
- TD -
- Stage -
- TP 24.0
- DS -
Crédits ECTS
Crédits ECTS 3.0
Objectif(s)
This course is an introduction to stochastic and distributed algorithms.
Jerome MALICK, Franck IUTZELER, Thomas ROPARS
Contenu(s)
Outline of the course:
- Introduction to convex optimization: concepts of convex analysis (duality, proximal operators), how to identify potential difficulties in optimization problems, specific difficulties of large-scale settings. Illustrations in supervised learning (classification and regression problems) and in operation research (decomposition methods).
- Stochastic algorithms (SGD and variance-reduced versions) and applications in learning
- Distributed algorithms (map-reduce framework, asynchronous algorithms, federated learning)
Prerequisite: fundamental knowledge on matrix analysis and optimisation (corresponding to the Refresher course given at the beginning of the semester) is required. Basic notions and terminology intersect the material of the course "Efficient methods in optimization".
M = main grade (exam or report on labs sessions)
A = article presentation
final grade = 2M/3 + A/3
M = main grade (exam or report on labs sessions)
A = article presentation
final grade = 2M/3 + A/3
L'examen existe uniquement en anglais
Le cours est programmé dans ces filières :
- Cursus ingénieur - Master 2 Informatique - Semestre 9 (ce cours est donné uniquement en anglais )
- Cursus ingénieur - Master 2 Math. et Applications - Semestre 9 (ce cours est donné uniquement en anglais )
- Cursus ingénieur - Master 2 Math. et Applications - Semestre 9 (ce cours est donné uniquement en anglais )
Code de l'enseignement : WMM9MO15
Langue(s) d'enseignement :
Vous pouvez retrouver ce cours dans la liste de tous les cours.