Volumes horaires
- CM -
- Projet -
- TD 18.0
- Stage -
- TP -
- DS -
Crédits ECTS
Crédits ECTS 3.0
Objectif(s)
Face up challenging real-world problems in machine learning, be involved in multidisciplinary teams of data scientists, computer scientists, mathematicians and expert students in signal processing, and contribute to leading your team to the top rank!
Pierre ETORE, Jean-Baptiste DURAND
Contenu(s)
Different teams with M2 students issued from either MSIAM Data Science, MoSIG Data Science and SIGMA work on a same challenge on either complex, structured or big data, and maybe a combination of all three. Try and compare different approaches, take benefit from the computational power of clusters and from advice of your supervisors.
The data challenges stretch on several months, include some tutored sessions, if needed mini-courses, and of course your regular involvement over that period of time.
PrérequisBasic knowledge in programming languages (either python, R, C++)
Ranking, oral presentation and written reports.
One grade combining ranking, oral presentation and written reports.
L'examen existe uniquement en anglais
Le cours est programmé dans ces filières :
- Cursus ingénieur - Master 2 Informatique - Semestre 9 (ce cours est donné uniquement en anglais )
- Cursus ingénieur - Master 2 Math. et Applications - Semestre 9 (ce cours est donné uniquement en anglais )
Code de l'enseignement : WMM9AM20
Langue(s) d'enseignement :
Vous pouvez retrouver ce cours dans la liste de tous les cours.