Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

Distributed Systems for Data Management - 5MMSDTD7

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : -
    • Tutorials : -
    • Laboratory works : -
    • Projects : 27.0
    • Internship : -
    • Written tests : -
    ECTS : 2.0
  • Officials : Thomas ROPARS

Goals

The goal of this project is to design and automatically deploy a distributed data processing application. The application will be based on the main frameworks used in the Big Data community. The application will be automatically deployed in a public Cloud infrastructure.

The students will work in teams of 5 students.

Content

The students will build a distributed data processing system. These systems are very often used today in different domains (analysis of the stock market, analysis of sensors data, analysis of data coming from tracking systems, etc.). The students will be free to pick the domain targeted by their application.

A data processing system includes several components, each of them being distributed over several machines:

  • A data ingestion component
  • A data storage component
  • One or several data processing components
  • A visualization component

For this project, the students will use the standard technologies that are used by the main companies in the domain (Google, Facebook, LinkedIn, etc.). For example, the students could use:

  • Kafka or Samza for data ingestion
  • Spark or Flink for data processing
  • Cassandra, MongoDB or InfluxDB for storing data

Furthermore, the students will have to set up the software infrastructure that will allow to configure, deploy and automatically reconfigure their application to be able to execute it on a Cloud computing platform (Ex: AWS, Azure, etc.). The tools used for this stage could include:

  • Resource provisioning and configuration tools (ex: Ansible)
  • Software configuration and deployment tools (ex: Docker)
  • Orchestration tools (ex: Kubernetes)

Prerequisites

Networks, distributed systems, databases.

Tests

Demo of the running application. Report and documentation.

    • MCC en présentiel et distanciel **
      N1=P
      pas de rattrapage

Calendar

The course exists in the following branches:

  • Curriculum - Information Systems Engineering - Semester 9
see the course schedule for 2022-2023

Additional Information

Course ID : 5MMSDTD7
Course language(s): FR

The course is attached to the following structures:

You can find this course among all other courses.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update June 18, 2017

French
Grenoble INP - Ensimag
École nationale supérieure d'informatique et de mathématiques appliquées
681, rue de la passerelle - Domaine universitaire - BP 72
38402 SAINT MARTIN D'HERES
 
 
République Française         Groupe INP
    Université Grenoble Alpes