Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

Machine Learning Fundamentals - WMM9MO21

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 18.0
    • Tutorials : -
    • Laboratory works : -
    • Projects : -
    • Internship : -
    • Written tests : -
    ECTS : 3.0
  • Officials : Massih-Reza AMINI

Goals

Contact Massih-Reza AMINI

Content



Prerequisites

Tests

Reports: 30% of the mark
Final Examen: 70% of the mark

The exam is given in english only FR

Calendar

The course exists in the following branches:

  • Curriculum - Master 2 in Computer Science - Semester 9 (this course is given in english only EN)
  • Curriculum - Master 2 in Computer Science - Semester 9 (this course is given in english only EN)
  • Curriculum - Master 2 in Applied Mathematics - Semester 9 (this course is given in english only EN)
  • Curriculum - Master 2 in Computer Science - Semester 9 (this course is given in english only EN)
  • Curriculum - Master 2 in Computer Science - Semester 9 (this course is given in english only EN)
see the course schedule for 2020-2021

Additional Information

Course ID : WMM9MO21
Course language(s): FR

You can find this course among all other courses.

Bibliography

[1] Massih-Reza Amini - Apprentissage Machine de la théorie à la pratique, Eyrolles, 2015.
[2] Christopher Bishop - Neural Networks for Pattern Recognition, Oxford University Press, 1995.
[3] Richard Duda, Peter Hart & David Strok - Pattern Classification, John Wiley & Sons, 1997.
[4] John Shawe-Taylor & Nello Cristianini - Kernel Methods for Pattern Analysis, Cambridge University Press, 2004.
[5] Colin McDiarmid - On the method of bounded differences,Surveys in Combinatorics, 141:148-188, 1989.
[6] Mehryar Mohri, Afshin Rostamzadeh & Ameet Talwalker - Foundations of Machine Learning, MIT Press, 2012.
[7] Bernhard Schölkopf & Alexander J. Smola - Learning with Kernels, MIT Press, 2002.
[8] Vladimir Kolchinskii - Rademacher penalties and structural risk minimization, IEEE Transactions on Information Theory, 47(5):1902–1914, 2001.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update January 15, 2017

Université Grenoble Alpes