Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

PARTIAL DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE METHOD

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 18.0
    • Tutorials : 18.0
    ECTS : 2.5

Goals

Numerical solutions of Partial Differential Equations are at the center of computational science. The object of this course is to present the main standard PDEs and to give the principles of the finite difference method. Every chapter contains the continuous problem and several discrete algorithms.


Contact Emmanuel MAITRE

Content

  • Introduction : Mathematical modelling with PDEs.
    II - The finite difference method.
    Examples. Consistancy, stability and convergence.
    III - Parabolic equations : Diffusion phenomena.
    Analytic solutions, Fourier's method.
    Finite difference schemes (forward, backward, splitting, non linear case). Stability analysis.
    Multi-D case.
    IV Hyperbolic equations. Propagation phenomena.
    Transport equation, caracteristics, domain of dependance,
    Finite difference schemes. Introduction to finite volumes.
    Waves equation
    Non linear case: Burgers. Caracteristics, discontinuous solutions.


Prerequisites

Mathematical analysis (normed spaces, elementary Fourier analysis), linear algebra, basic numerical methods.
Evaluation

Tests

An exam at the end of the term(E).



N1=E1
N2=E2

Additional Information

Curriculum->MMIS.->Semester 3

Bibliography

G. Allaire. Analyse numerique et optimisation. Editions de l’Ecole Polytechnique, 2006.
B. Mohammadi, JH Saiac. Pratique de l’analyse numerique. Dunod, 2003

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
Université Grenoble Alpes