Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

3D computer graphics - 4MMG3D6

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 15.0
    • Tutorials : -
    • Laboratory works : 18.0
    • Projects : -
    • Internship : -
    • Written tests : -
    ECTS : 3.0
  • Officials : Jean-Sebastien FRANCO

Goals

3D Virtual Worlds are omnipresent in a wide range of applications, from entertainment and culture - special effects, 3D feature films, video games, reconstruction of cultural heritage for museums - to industrial applications such as the design of virtual prototypes or professional training through interactive simulators.

This course is an introduction to Computer Graphics: it presents the basic techniques to model 3D shapes, deform and animate them over time and to render them into images and movies of the corresponding 3D world. Applications to virtual characters and to natural scenes modeled at different level of details (LOD) will studied.

Throughout the course, students will be trained to OpenGL programming and work on a "case study" project, which will give them the opportunity to do some personal reading and combine the methods they have studied to create their own animated 3D scene.

Content

1. Rendering techniques. Projective rendering: graphic pipe-line, shading, textures and aliasing problems. Introduction to realistic rendering (ray-tracing).
2. Geometric modeling. Representation & creation of 3D shapes, deformation techniques.
3. Computer Animation. Kinematic and procedural methods, introduction to physically-based models through point-based physics & collision processing.
4. Case studies: layered models for characters and LODs for natural scenes.

Prerequisites

Programming in Python and C

Tests

Session 1 (N1):

  • E1: A two-hours written exam (1 A4 sheet of paper permitted for the exam; all other course material, and any electronic or communication device prohibited)
  • P: 1 project assignment per group of 2 or 3 students

Session 2 (N2): the exam mark E1 will be replace by the mark of a new exam E2, which will be either written or oral depending on the number of concerned students. The documentary constraints are the same as for the session 1 exam. The project mark will remain unchanged.

N1 = 1/2 E1 + 1/2 P
N2 = 1/2 E2 + 1/2 P

    • MCC en présentiel **
      Note finale = 1/2 examen (E1 ou E2 selon la session) + 1/2 projet (P)
      N1 = 1/2 E1 + 1/2 P
      N2 = 1/2 E2 + 1/2 P
      La note d'examen (E1) pourra être remplacée par une note d'oral ou d'écrit de rattrapage, selon le nombre d'élèves concernés (E2). La note de projet restera inchangée.
    • MCC en distanciel **
      Note finale = projet (P)
      N1 = P
      N2 = 1/2 E2 + 1/2 P
      Un oral ou écrit de rattrapage organisé pour les étudiants ne validant pas N1, selon le nombre d'élèves concernés (E2), en distanciel. La note de projet restera inchangée.

Calendar

The course exists in the following branches:

  • Curriculum - Math. Modelling, Image & Simulation - Semester 8
  • Curriculum - Information Systems Engineering - Semester 8
see the course schedule for 2022-2023

Additional Information

Course ID : 4MMG3D6
Course language(s): FR

The course is attached to the following structures:

You can find this course among all other courses.

Bibliography

  • J. D. Foley and A. van Dam and Steven K. Feiner and John F. Hughes
    Fundamentals of Interactive Computer Graphics
    Addison-Wesley Publishing Company, 1990.
  • E. Angel
    Interactive Computer Graphics: A Top Down Approach with OpenGL,
    Addison-Wesley Publishing Company, 2003.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update January 15, 2017

French
Grenoble INP - Ensimag
École nationale supérieure d'informatique et de mathématiques appliquées
681, rue de la passerelle - Domaine universitaire - BP 72
38402 SAINT MARTIN D'HERES
 
 
République Française         Groupe INP
    Université Grenoble Alpes