Aller au menu Aller au contenu
Une voie, plusieurs choix
Informatique et Mathématiques appliquées
Une voie, plusieurs choix

> Formation > Cursus ingénieur

An Introduction to Shape and Topology Optimization - 5MM2TMP1

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 18.0
    • Tutorials : -
    • Laboratory works : -
    • Projects : -
    • Internship : -
    • Written tests : -
    ECTS : 1.5
  • Officials : Charles DAPOGNY, Eric BONNETIER

Goals

The discipline of shape and topology optimization has aroused a growing enthusiasm among mathemati-
cians, physicists and engineers since the seventies, fostered by its impressive technological and industrial achievements. Nowadays, problems pertaining to fields so diverse as mechanical engineering, fluid mechanics or quantum chemistry are currently tackled with such techniques, and raise new, challenging issues.
The purpose of this course is to provide an introduction to the basic stakes of shape and topology optimization, from both theoretical and numerical viewpoints, and to provide an overview of modern techniques and developments, close to recent industrial concerns.

Content

This course is intended to go half-way between the theoretical and the practical, algorithmic stakes of shape and topology optimization.
The precise contents of the course will depend on the reactions of the audience; however, it is expected that the following theoretical topics will be discussed:

  • Existence and non existence of an optimal design.
  • Homogenization of partial differential equations, and applications in shape optimization.
  • The method of Hadamard for defining shape variations and shape derivatives.
  • The practical calculation of shape derivatives, involving the adjoint method.

The numerical issues tackled during the course include:

  • The device of a basic, shape gradient algorithm.
  • The use of a basic mesh deformation algorithm.
  • The level set method for shape and topology optimization.
  • Density-based topology optimization methods.

Prerequisites

A basic knowledge in the mathematical analysis of PDE and numerical programming is assumed from the attendants; the first lectures will provide refreshers about a number ofsuch issues.

Tests

The grading will be based on a written exam and / or an oral presentation of a research article.

The exam is given in english only FR

Calendar

The course exists in the following branches:

  • Curriculum - Math. Modelling, Image & Simulation - Semester 9 (this course is given in english only EN)
  • Curriculum - Math. Modelling, Image & Simulation - Semester 9 (this course is given in english only EN)
see the course schedule for 2020-2021

Additional Information

Course ID : 5MM2TMP1
Course language(s): FR

You can find this course among all other courses.

Bibliography

[1] G. Allaire, C. Dapogny, and F. Jouve, Shape and topology optimization, Hal preprint:
https://hal.archives-ouvertes.fr/hal-02496063, (2020).

[2] G. Allaire and M. Schoenauer, Conception optimale de structures, vol. 58, Springer, 2007.

[3] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business Media, 2013.

[4] C. Dapogny, An introduction to shape and topology optimization, exercise sessions available at:
https://github.com/dapogny/GDR-MOA-Course, 2018.

[5] , An introduction to shape and topology optimization, online course available at:
https://hal.archives-ouvertes.fr/cel-01923097v1, 2018.

[6] F. Hecht, New development in freefem++, Journal of numerical mathematics, 20 (2012), pp. 251--266.

[7] A. Henrot and M. Pierre, Variation et optimisation de formes: une analyse géométrique, vol. 48, Springer Science & Business Media, 2006.

[8] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids, Oxford university press, 2010.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update June 30, 2020

Université Grenoble Alpes